Chapter 14 Global Search Algorithms

An Introduction to Optimization
Spring, 2014

Wei-Ta Chu

Introduction

4

We discuss various search methods that attempts to search
throughout the entire feasible set. These methods use only
objective function values and do not require derivatives.

They are applicable to a much wider class of optimization
problems.

They can be used to generate “good” initial points for the
iterative methods discussed in earlier chapters.

Some methods are also used in combinatorial optimization,
where the feasible set is finite, but typically large.

The Nelder-Mead Simplex Algorithm

» A simplex is a geometric object determined by an assembly of
n+1 points, p,,p,,....p, ,INthe -dimensional space such that
Py P1 - - Dy
det [1 Lo 1] +# ()
» This condition ensures that two pointsin do not coincide,
three points ink? are not colinear, four point&in are not
coplanar, and so on. Thus, simplexan is a line segment, in

it is a triangle, while a simplex ir? Is a tetrahedron; in each
case it encloses a finite -dimensional volume.

The Nelder-Mead Simplex Algorithm

» Suppose that we wish to minimizer), ¢ € R" . To start the
algorithm, we initialize a simplex af +1 points. A possible
way to set up a simplex is to start with an initial paifit = p,
and generate the remaining points of the initial simplex as
follows:

P, =py+ ANei,t=1,2,...,n
where thee; are unit vectors constituting the natural basts of
The positive constant coefficients are selected in such as
way that their magnitudes reflect the length scale of the
optimization problem.

The Nelder-Mead Simplex Algorithm

» Our objective is to modify the initial simplex stage by stage so
that the resulting simplices converge toward the minimizer. In
the function minimization process, the point with the largest
function value is replaced with another point. The process of
modifying the simplex continues until it converges toward the
function minimizer.

» We use a two-dimensional example to illustrate the rules.
Select the initial set of +1 points that are to form the initial
simplex. We next evaluate at each point and ordert the
vertices to satisfy

fpo) < flpy) <+ < f(py)

The Nelder-Mead Simplex Algorithm

4

For the two-dim case we let, p,,, p. denote the points of the
simplex for whichf is largest, next largest, and smallest; that is,
because we wish to minimizé , the vertex IS the best

vertex, p, IS the worst vertex, apg IS the next-worst vertex.
We next compute, , the centroid of the best points:
n— pz’
Py, = ZizOl N

77/

. 1
In our two-dim casep =2 , we would haye= §(pnl +p,)

We then reflect the worst vertex) using a reflection
coefficient , >~ ¢ to obtain the reflection point

p.=p,+pp,— D1,

The Nelder-Mead Simplex Algorithm

» The typical value is =1 . We proceed to evalyate p, at to
obtainf. = f(p,) .1 <f <fo [i.e.fif lies betwgen f(p,)
and f. = f(p,)], thenthe poipt replages to form a new
simplex, and we determine the iteration. (Figure 14.1)

» We proceed to repeat the process. Thus, we compute the
centroid of the best vertices of the new simplex and again
reflect the point with the largest functign value in the centroid
obtained for the best points of the new simplex.

Dn;

p, =p,+p(p, — D1,

D

The Nelder-Mead Simplex Algorithm

» If, however, f, < fs=fo , sothatthe pgmt yields the smallest
function value among the points of the simplex, we argue that
this direction is a good one. In this case we increase the
distance traveled using ajpansion coefficient x > 1 (e.g.,

x =2) to obtain
P. =P, + X(Pr — P,

» The operation above yields a new point on the #imep,
extended beyong, .l </ now, the expansion is declared

a success ang, replaces In the next simplex. If, on the
other handf. > f. , the expansion is a failure@nd repdaces
Dy
P,
Py
8

The Nelder-Mead Simplex Algorithm

4

Finally, if f. > f., , the reflected poigt. would constitute the
point with the largest function value in the new simplex. Then
In the next step it would be reflectedan , probably an
unfruitful operation.

Instead, this case is dealt with bgamtraction operation in
one of two ways. First, If, > fu anfd< f; , then we contract
(p, — p,) With a contraction coefficient <~ <1 to obtain

P. =P, + (P, — P,)

We refer to this operation as thetside contraction.
Dy

p, P p,

Dy

2

The Nelder-Mead Simplex Algorithm

» If, on the other handf, > f, and> fi , then
In the contraction operation and we get

p.=p,+7p— D,

» This operation, referred to as timside contraction.

Dy

10

replaces

The Nelder-Mead Simplex Algorithm

» If, in either casef. < f; , the contraction is considered as
success, and we replage with In the new simplex. If,
however, f.> f; , the contraction is a failure, and in this case a
new simplex can be formed by retainipg only and halving
the distance fronp, to every other point in the simplex.

» We can refer to this event as a shrinkage operation. In general,
the shrink step produces the new vertices of the new simplex
according to the formula

v,=p,+o(p,—p,),i=12..,n
where ¢ =1/2 . Hence, the vertices of the new simplex are
Pg, V1, ..., Uy D)

pnl+ps
2

11
Ps

The Nelder-Mead Simplex Algorithm

4

Figure 14.6 illustrates the simplex search method by showing
the first few stages of the search for a minimizer of a function
of two variables.

The starting simplex is composed of the vertice®, C . The
vertices p, g are obtained by the expansion operation.

The vertexr Is obtained by the reflection operation. The
vertex g is obtained using the outside contraction operation,
while the vertexy Is obtained employing the inside
contraction operation.

For clarity we terminate the process with the simplex
composed of the verticas, H. 1

12

Simulated Annealing

4

Simulated annealing is an instance of a randomized search
method. Arandomized search method, also called a
probabilistic search method, is an algorithm that searches the
feasible set of an optimization problem by considering
randomized samples of candidate points in the set.

Suppose that we wish to solve an optimization problem
minimize f(a

subject to & € ()

Typically, we start a randomized search process by selecting a
random initial pointz® ¢ () . Then, we select a random next-
candidate point, usually close i@’

13

Simulated Annealing

» We assume that for anyc @, there is aNget c O such
that we can generate a random sample from this set. Typically,
N(z) is a set of points that are “close”40 , and for this reason
we usually think ofv(z) as a “neighborhood”©f

» When speaking of generating a random poinvis) , we
mean that there is a prespecified distribution avét) , and we
sample a point with this distribution. Often, this distribution is
chosen to be uniform ovey(z) ; other distributions are often
used, including Gaussian and Cauchy.

14

Naive Random Search

» Naive random search algorithm
1. Setk := 0 . Select an initial poiglf) c
2. Pick a candidate point*> at random fraviac(*))
3. 1f f(zW) < f(x®)) | then sgti+D) = 2(+ : else, satt+l) = K
4. If stopping criterion satisfied, then stop.
5. Setk:=k+1 ,gotostep 2.

» Note that the algorithm has the familiar fogtit) — £*) 1+ g*
where d%) is randomly generated. By design, the diregtion
either iso or is a descent direction. Typical stopping criteria
Include reaching a certain number of iterations, or reaching a
certain objective function value.

15

Simulated Annealing Algorithm

» The main problem of the random search method is that it may
get stuck in a region around a local minimizer. For example, if
£ is a local minimizer andi(z(®) is sufficiently small that all
points in it have no smaller objective function value than |
then clearly the algorithm will be stuck and will never find a
point outside ofy(z(©)

» We need to consider points outside this region. One way to
achieve this goal is to make sure that at gach |, the
neighborhoodn () is a very large set. An extreme example
Is wheren(z*)) = . However, this results in slow search
process, because the sampling of candidate points to consider is
spread out, making it more unlikely to find a better candidate
point.

16

Simulated Annealing Algorithm

» Another way is to modify the naive search algorithm so that we
can “climb out” of such as region. This means that the
algorithm may accept a new point thatvar se than the current
point.

» Simulated annealing algorithm

1. Setk :=0 . Select an initial poielf) € 0
2. Pick a candidate poirt®*) at random fravigac(*))

3. Toss a coin with probability of HEAD equal ik, f(z*)), f(z®))
If HEAD, then setg(*+1) = 2k - else, gdttl) = (k)

4. If stopping criterion satisfied, then stop.
5.Setk:=k+1 ,gotostep 2.

17

Simulated Annealing Algorithm

» The simulated anneal algorithm also has the familiar form
k) — 20 1 gk, whered®) is randomly generated. But in
simulated annealing the directia®® might be an ascent
direction. However, as the algorithm progresses, we can keep
track of thebest-so-far point —that is a poing!* which, at
eachr ,isequaltod’ js {0,.. k) suchftla@?c < flax)
for allze {0,....k} .

» The best-so-far point can be updated at eachkstep as follows:
W {ww if fa) < f(a),,"

€T =
best (k—1)
T, otherwise

18

Simulated Annealing Algorithm

» By keeping track of the best-so-far point, we can treat the
simulated annealing algorithm simply as a search procedure;
the best-so-far point is what we eventually use when the
algorithm stops.

» The major difference between simulated annealing and naive
random search is that in step 3, there is some probability that
we set the next iterate to be equal to the random point selected
from the neighborhood, even if that point turns out to be worse
than the current iterate. This probability is called the
acceptance probability.

19

Simulated Annealing Algorithm

» The acceptance probability must be chosen appropriately. A
typical choice is
plk, f(zW), f(@W)) = min{1, exp(—(f(2™) — f(=™))/T})}
whereexp IS the exponential function and represents a
positive sequence called tteenperature schedule or cooling
schedule.

» Notice that iff(z*) < f(z®)) | thetk, f(z™), f(x®)) =1 ,
which means that we sett+!) = 2* . Howeveftzif)) > f(x*)
there is still a positive probability of settingf*! = 2. : this
probability is equal to

S0 _)
eXp(_f()ka())

20

Simulated Annealing Algorithm

4

Note that the larger the difference betwegésn*) fapld) ,
the less likely we are to move to the worse peinit . Similarly,
the smaller the value af, , the less likely we are to moyxé to

It is typical to let the “temperaturg’, be monotonically
decreasing to 0 (hence the waabling). In other words, as
the iteration index increases, the algorithm becomes
Increasingly reluctant to move to a worse point.

The intuitive reason for this behavior is that initially we wish to
actively explore the feasible set, but with time we would like to
be less active in exploration so that we spend more time in a
region around a global minimizer.

21

Simulated Annealing Algorithm

» The termannealing comes from the field of metallurgy, where
It refers to a technique for improving the property of metals.
The basic procedure is to heat up a piece of metal and then cool
it down in a controlled fashion. When the metal is first heated,
the atoms in it become unstuck from their initial positions.
Then, as cooling takes place, the atoms gradually configure
themselves in states of lower internal energy. Provided that the
cooling is sufficiently slow, the final internal energy is lower
than the initial energy, thereby refining the crystalline structure
and reducing defects.

22

Simulated Annealing Algorithm

» Hajek shows that an appropriate cooling schedule is

0

 log(k +2)

where~ >0 Is a problendependent constant (large enough to
allow the algorithm to “climb out” of regions around local
minimizers that are not global minimizers).

» Simulated annealing is often also used in combinatorial
optimization, where the feasible set is finite. An example is the
celebratedraveling salesperson problem.

1y

23

Particle Swarm Optimization

» This optimization method is inspired by social interaction
principles. The PSO algorithm differs from the randomized
search methods in one key way: Instead of updating a single
candidate solutio:*) at each iteration, we update a
population (set) of candidate solutions, calledvaarm. Each
candidate solution in the swarm is calleobaticle.

» We think of a swarm as an apparently disorganized population
of moving individuals that tend to cluster together while each
iIndividual seems to be moving in a random direction.

24

Particle Swarm Optimization

» Suppose that we wish to minimize an objective function aver
In the PSO algorithm, we start with an initial randomly
generated population of pointsin . Associated with each
point in the population is a velocity vector. We think of each
point as the position of a particle, moving with an associated
velocity.

» We then evaluate the objective function at each point in the
population. Based on this evaluation, we create a new
population of points together with a new set of velocities.

25

Particle Swarm Optimization

4

Each particle keeps track of liest-so-far position. That is the
best position it has visited so far. We will calpersonal best
(pbest). In contrast, the overall best-so-far position is called a
global best (gbest).

The particles “interact” with each other by updating their
velocities according to their individual personal best as well as
the global best. In thgbest version of the PSO algorithm, the
velocity of each particle is changed, at each time step, toward a
combination of itgbest and thegbest locations.

Typical stopping criteria of the algorithm consist of reaching a
certain number of iterations, or reaching a certain objective
function value.

26

Basic PSO Algorithm

» Letf: R" = R Dbe the objective function that we wish to
minimize. Letd be the population size, and index the particles
Inthe swarm by =1,....d . Denote the position of particle by
xz; € R and its velocity by, ¢ R . Lat, be tbimest of
particle ; andg the best.

» It Is convenient to introduce thadamard product (or Schur
product) operator, denoted by .M apd are matrices with
the same dimension, theno B IS a matrix of the same
dimension ast resulting from entry-by-entry multiplication of
A andB .

27

Basic PSO Algorithm

» 1. Setk.=0 . For=1,...,d , generate initial random positions
z\” and velocitiesy” , and spf’ =z . Set
wE{wgo) :cf,p)} f(iB)

g(o) = arg min

» 2.Fori=1,...d ,generate randem -vecidts sdAhd with
components uniformly in the interval (O, 1), and set
o = 4 eir o (o 2) 4 crs o (g —

m5k+1) wfk) 4 v(k:-l—l)

7

» 3.Fori=1...d i) < £p) , thenget) = g ;
else, setp! (k+1) —p'"

» 4. If there exists e {1,...d} such that"") < f(g!") , then set
g+l = (kﬂ ' else, Setg (k+1) — gk

» 5. If stopping criterion satisfied, then stop.
»26. Setk =k +1 , go to step 2.

Basic PSO Algorithm

» The parametey Is referred to agraantial constant.
Recommended values are slightly less than 1. The parameters
¢ and ¢, are constants that determine how much the particle is
directed toward “good” positions. They represent a “cognitive”
and a “social” component, respectively, in that they affect how
much the particle’s person best and the global best influence its
movement. Recommended values are, ~ 2

29

Variations

» The PSO techniques have evolved since 1995. Recently Clerc
proposed &onstriction-factor version of the algorithm, where
the velocity is updated as

vgkﬂ) = m<v§k> + clrgk) o (pM) — :L'Ek)) + 023§k> o (g — mgk))j

(2

where the constriction coefficiert Is computed as

K= 2 ¢=c1+c
|2_¢_\/¢2_4¢| ¢>4
» For example, fop =4.1 , we have- 0.729 . The role of the

constriction coefficient is to speed up the convergence.

30

Genetic Algorithms

» A genetic algorithm is a randomized, population-based search
technique that has its roots in the principles of genetics.

» Suppose that we wish to solve an optimization problem of the

form maximize f(x)

subject to & € ()

» We start with an initial set of points in , denotedyy) ,
called thanitial population. We then evaluate the objective
function at points irr(0) . Based on this evaluation, we create a
new set of pointg(1) . The creationmf) Involves certain
operations on points in(0) , calleabssover andmutation.

We repeat the procedure iteratively, generating populations
P(2), P(3),..., until an appropriate stopping criterion is reached.

31

Genetic Algorithms

» The purpose of the crossover and mutation operations is to
create a new population with an average objective function
value that is higher than that of the previous population.

» Genetic algorithms do not work directly with points in the¢set
but rather with amncoding of the points i . Specifically, we
need first to map onto a set consisting of strings of symbols,
all of equal length. These strings are catletbmosomes.

Each chromosome consists of elements from a chosen set of
symbols, called thalphabet. For example, a common alphabet
IS the set {0.1}, in which case the chromosomes are simply
binary strings.

32

Genetic Algorithms

4

We denote by, the length of chromosomes (i.e., the number of
symbols in the strings). To each chromosome there corresponds
a value of the objective function, referred to asfitmess of

the chromosome.

For each chromosome , we write) for its fithess. We
assume that Is a nonnegative function.

The choice of chromosome length, alphabet, and encoding is
called therepresentation scheme for the problem.

|dentification of an appropriate representation scheme is the
first step in using genetic algorithms.

33

Genetic Algorithms

» Once a suitable representation scheme has been chosen, the
next phase is to initialize the first populatiof) of
chromosomes. This is usually done by a random selection of a
set of chromosomes.

» We then apply the operations of crossover and mutation on the
population. During each iteratign of the process, we evaluate
the fithessf(z'¥)) of each memhg¥ of the population
After the fitness of the entire population has been evaluated, we
form a new populatio(k + 1) In two stages.

34

Selection and Evolution

» We form a set(k) with the same number of elementsias
This number is called th@opulation size, which we denote by
N. The setv/(k) , called tiaating pool, is formed fromp(k
using a random procedure as follows.

» Each pointm® in/(k) isequali Pik) with
probability Fz®)
F(k)

where F(k) =3 f(z'*))

and the sum is taken over the wholerof . In other words, we
select chromosomes into the mating pool with probabilities
proportional to their fitness.

» The selection scheme is called tloalette-wheel scheme.

35

Selection and Evolution

» An alternative selection scheme is thernament scheme.

» First, we select a pair of chromosomes at random frgm
We then compare the fithess values of these two chromosomes,
and place the fitter of the two intg(k) . We repeat this
operation until the mating poof(k) contams chromosomes.

» Thecrossover operation takes a pair of chromosomes, called
the parents, and gives a pair affspring chromosomes. The
operation involves exchanging substrings of the two parent
chromosomes.

36

Selection and Evolution

4

Pairs of parents for crossover are chosen from the mating pool
randomly, such that the probability that a chromosome is
chosen for crossover js . We assume that whether or not a
given chromosome is chosen is independent of whether or not
any other chromosome is chosen for crossover.

We may randomly choose two chromosomes from the mating
pool as parents. I¥ is the size of the mating pool, there/N
Similarly, if we randomly pick2kx chromosomes, forming
pairs of parents, we haye= 2k/N

Another way is, given a value @f , we pick a random number
of pairs of parents such that the average number of pairs is

37

Selection and Evolution

» We apply the crossover operation to the parents. There are
many types of crossover operations. The simplest crossover
operation is thene-point crossover. We first choose a number
randomly between 1 and- 1 according to a uniform
distribution, wherg, Is the length of chromosomes. We refer
to this number as therossing site. Crossover then involves
exchanging substrings of the parents to the left of the crossing

Site.
Parent chromosomes Offspring chromosomes

vvvvvvvvvvvvvvvvv
L X D I SCMON O]
t.:.‘.: :0’.‘0’0?.:0’.. * .OOO.C.I

Crossing site

38

Selection and Evolution

» We can also have crossover operations with multiple crossing

sites.
Parent chromosomes Offspring chromosomes

Crossing sites

» After the crossover operation, we replace the parents in the
mating pool by their offspring. The mating pool has therefore
been modified but maintains the same number of elements.

39

Selection and Evolution

» Next, we apply thenutation operation, which takes each
chromosome from the mating pool and randomly changes each
symbol of the chromosome with a given probability

» In the case of binary alphabet, this change corresponds to
complementing the corresponding bits. If the alphabet contains
more than two symbols, then the change involves randomly
substituting the symbol with another symbol from the alphabet.

» Typically, the value ofy,, is very small (e.g., 0.01), so that
only a few chromosomes will undergo a change due to
mutation.

40

Genetic Algorithm

v

1. Sett .= 0 . Generate an initial population
2. Evaluatep(k

3. If the stopping criterion is satisfied, then stop.
4. SelectM (k) fronP(k =
5. EvolveM(k) toformP(k+1) B
6. Setk =%k +1 , go to step 2.

v Vv

v

v

v

Stopping
Criterion
Satisfied?

No

P(k)

AN Selection

M(k)
Y

Evolution

Crossover e
(on)

P(k+1
41 | Pl1)

ki=k+1

Genetic Algorithm

» During execution of the genetic algorithm, we keep track of the
best-so-far chromosome, which serves as the candidate for the
solution to the original problem. We may even copy the best-
so-far chromosome into each new population, a practice
referred to asglitism.

» The stopping criterion can be implemented in a number of
ways. For example, stop after a prespecified number of
iterations, or stop when the fitness for the best-so-far
chromosome does not change significantly.

42

Genetic Algorithm

» The genetic algorithm differs from the algorithms discussed in
previous chapters in several respects
1. It does not use derivatives of the objectivecfiom
2. It uses operations that are random within etszhtion

3. It searches from a set of points rather thanglespoint at each
iteration (like the PSO algorithm)

4. It works with an encoding of the feasible séheawith than the
set itself

43

Example

4

Consider the MATLAB peaks functign R — R

: o —(24+1)2—y?
Fla,y) = 3(1 — 2P0 10 — ot~ yf)er - E

We wish to maximiz¢ over the set {[z,y|" € R?: -3 <,y <3}
Using the MATLAB functionfminunc (from the Optimization

Toolbox), we found the optimal point to be).0093, 1.5814]” ,
with objective function value 8.1062.

10

54

= SO
> 0, Y ,,'I: A0S
x SOV INELA A XIS
= RN oot se%e:
NN
: SR
54 X .‘q,f{,{{;,

7
LI

44

Example

4

We use a binary representation scheme with lelog82,

where the first 16 bits encode the component, whereas the
remaining 16 bits encode the component. We first map the
interval [-3, 3] onto the intervah, 2! —1] , via a simple
translation and scaling. The integers in the integpval — 1]

are then expressed as binary 16-bit strings.

The chromosome is obtained by juxtaposing the two 8-bit
strings. For example, the poiaty]” = [—1,3]" IS encoded as
01010101010101011111111111111111
N AN J

Y Y
Encodedx = —1 Encodedy = 3

45

Example

» Using a population size of 20, we apply 50 iterations of the
genetic algorithm. We used valuespt 0.75 ane 0.0075

» The best-so-far solution obtained at the end of the 50 iterations
Is [0.0615, 1.5827], with objective function value 8.1013. Note
that his solution and objective function value are very close to
those obtained using MATLAB.

--0-- Best
st —— Average
__G.f -+ Worst

i 95 0000090000000

Objective Function Value
N

|
]
! |
] | i
1 1 !
| ¥ : \ \
: . LA 1 Lot
OF = »¥ I'. f’T d “t—t‘ # ¢
! L | y | 1 ;
" :: : |I 1 II F :I ::
-2r 4 ! ,‘ ',r') :: |: 117
i L
& Y] iy " '
oo ! 1 h I|
-4} [y ¢ I Iy
} | ' h '
46 ! SN S
_B 1 1 1 1
0 10 20 30 40 50

Generations

Analysis of Genetic Algorithms

» For convenience, we only consider chromosomes over the
binary alphabet. The notimehema is a set of chromosomes
with certain common features. For example, the notion 1*01
represents the schema

1 %01 = {1001,1101}
and the notation 0*101* represents the schema
0 % 101% = {001010, 001011, 011010, 011011}
Thus, a schema describes a set of chromosomes that have
certain specified similarities.

» Ifaschema has “don’t care” symbols, then it contains
chromosomes. Moreover, any chromosome of lemgth
belongs t@! schemata.

47

Analysis of Genetic Algorithms

» Given a schema that represents good solutions to our
optimization problem, we would like the number of matching
chromosomes in the populatienk’ to grow.as increases.
This growth is affected by several factors. We assume
throughout that we are using the roulette-wheel selection
method.

» If a schema has chromosomes with better-than-average fithess,
then the expected (mean) number of chromosomes matching
this schema in the mating pawi(k) IS larger than the number
of chromosomes matching this schema in the population

48

Analysis of Genetic Algorithms

4

To quantify this assertion, lef be a given schema, and let
e(H, k) be the number of chromosomesr¥ that match
that is,e(H, k) Is the number of elements in therser #

Let f(H,k) be the average fithess of chromosomesin that
match schema . This means thatlif) P(k) = {z1, ..., T 1}

_ S+ (@)
f<H7k>— Q(H,k)

Let N be the number of chromosomes in the populatiorrénd
be the sum of the fithess values of chromosomesin

Denote byF'(k) the average fithess of chromosomes in the
population

F(k)= F(k)/N =+ 3 f(=")

49

Analysis of Genetic Algorithms

4

Let m(H, k) be the number of chromosomes (k) that match
In other words, the number of elements in the\sgt N H

Lemma 14.1: Letr be a given schemaand, k) be the
expected value ofv.(H, k), givemk, , then
_ J(H, k)

M(H. k) = ™ e(H, k)
This lemma quantifies that if a schemia has chromosomes
with better than average fitness, i.84,k)/F(k) > 1 , then the
expected number of chromosomes matcling in the mating
pool is larger than the number of chromosomes matching in

the population.

50

Analysis of Genetic Algorithms

» We now analyze the effect of the evolution operations on the
chromosomes in the mating pool. Tdreler o(S) of a schema
IS the number of fixed symbols in its representation. If the
length of chromosomes iy is ,thefs) Lis minus the
number of * symbols ins . For example,

o(1%01)=4—1=3 o00x1%01)=6—2=4

» Thelength /(s) of a schemas is the distance between the first
and last fixed symbols.
[(1x01)=4—1=3 [(0x10lx)=5—-1=4 I(xx1x)=0

51

Analysis of Genetic Algorithms

4

The ordero(S) Is a number between O and , and the length
I(S) Is a number between O amd-1 . The order of a schema
containing no * symbolsigs , e.g(l01l)=4—-0=4 . The
length of a schema with fixed symbols in its first and last
poOSItioNS ISL — 1 , .00 x*1)=4—1=3

Given a chromosome inv(k)VH , the probability that it leaves
after crossover is bounded above by a quantity that is
proportional top. andH)

Lemma 14.2: Given a chromosomennk) (N H , the probability
that it is chosen for crossover and neither of its offspring s in

IS bounded above by
[(H)

pc—L 1

52

Analysis of Genetic Algorithms

» From Lemma 14.2, we conclude that given a chromosome
In M(k) H , the probability that either it is not selected for
crossover or that at least one of its offspring I8 in after the
crossover operation, is bounded below by

[(H)
1 - ch 1
» Lemma 14.3: Given a chromosomeink) N\ H , the

probability that it remains i after the mutation operation is

given by)
(1 — pm) (#) ~1-— p’ffL()(H)

53

Analysis of Genetic Algorithms

» Theorem 14.1: Ley be a given schema &fid x + 1 be the
expected value of H, k + 1) givenk , then

» Theorem 14.1 indicates how
given schema chan

54

€<H,]€—|—1) > (1 —pcﬂ) 1_pm>0(H

H K
L—1 e,k

number of chromosomes in a
romyone population to the next.

1. the role of average fitness of the given scheniee higher the
average fitness, the highgr the expected numbmiatthes in the
next population.

2. the effect of crossover — the smaller the tehm,higher the
expected number of matches in the next population

3. the effect of mutation — the larger the term,liggher the expected
number of matches in the next population

Analysis of Genetic Algorithms

» In summary, a schema that is short, low order, and has above-
average fitness will have on average an increasing number of
Its representatives in the population from iteration to iteration.

» Observe that the encoding is relevant to the performance of the
algorithm. Specifically, a good encoding is one that results in
high-fithess schemata having small lengths and orders.

55

Real-Number Genetic Algorithms

» The genetic algorithms described thus far operate on binary
strings, representing elements of the feasible:set . However,
there are some disadvantages to operating on binary strings. To
see this, ley : {0,1}* = Q represent the binary “decoding”
function; that is, ifz Is a binary chromosomes;) € 0 IS the
point in the feasible set < i» whose encoding is . Therefore,
the objective function being maximized by the genetic
algorithm is notf itself but rather the compositionfof and the
decoding functiory . In other words, the optimization problem
being solved is

maximize f(g(x))

subject to x € {y € {0,1}*: g(y) € Q)

56

Real-Number Genetic Algorithms

4

This optimization problem may be more complex than the
original optimization problem. For example, it may have extra
maximizers, making the search for a global maximizer more
difficult.

In real-number algorithms, for crossover, we have several
options. The simplest is to use averaging: for a pair of parents
zandy , the offspring is = (x +y)/2 . This offspring can then
replace one of the parents.

Alternatively, we may produce two offspring as follows
zi=(x+y)24+w; z=(x+y)/2+w,

wherew; andw, are two randomly generated vectors (with
Zero mean).

57

Real-Number Genetic Algorithms

» A third option is to take random convex combinations of the
parents. Specifically, we generate a random numlae(, 1)
and then produce two offspring = ax + (1 — o)y and
zo=(1—a)x+ay

» A fourth option is the perturb the two points by some random
amount:z, =az+ (1 —a)y+w; 2y=(1—-a)x+ay + w;

» For mutation, a simple implementation is to add a random
vector to the chromosome. Specifically, given a chromosome

we produce this mutation as8 = = + w . This mutation is also

called areal number creep.
» An alternative: P —ax+(l-alw ac(01)
w € ()

58

Example

» Consider again the previous example. We apply a real-number
genetic algorithm to find a maximizer ¢f using a crossover
operation of the fourth type described above and a mutation
operation of the second type above.

» With a population size of 20, we apply 50 iterations. As before,
we used parameter values of= 0.75 @and 0.0075 . The
best-so-far solution obtained at the end of the 50 |terat|ons 1S
[—0.0096, 1.5845]" , with objective
function value 8.1061, which is
close to the result described
previously.

0000 o oeoooooeooooooooooe—ooooooooaoeooma
Ie) K

Objective Function Value
JL r'\: o n H [=2] @ o
T T T T T T

-0-- Best
—— Average
—* Worst

|
)
- -

59

|
o

10 20 30 40 50
Generations

o

