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Introduction
� We discuss various search methods that attempts to search 

throughout the entire feasible set. These methods use only 
objective function values and do not require derivatives. 

� They are applicable to a much wider class of optimization 
problems. 

� They can be used to generate “good” initial points for the 
iterative methods discussed in earlier chapters. 

� Some methods are also used in combinatorial optimization, 
where the feasible set is finite, but typically large. 
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� A simplex is a geometric object determined by an assembly of 
points,                    , in the    -dimensional space such that 

� This condition ensures that two points in     do not coincide, 
three points in       are not colinear, four points in      are not 
coplanar, and so on. Thus, simplex in     is a line segment, in 
it is a triangle, while a simplex in       is a tetrahedron; in each 
case it encloses a finite    -dimensional volume. 
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� Suppose that we wish to minimize                    . To start the 
algorithm, we initialize a simplex of           points. A possible 
way to set up a simplex is to start with an initial point
and generate the remaining points of the initial simplex as 
follows:  

where the      are unit vectors constituting the natural basis of 
The positive constant coefficients      are selected in such as 
way that their magnitudes reflect the length scale of the 
optimization problem. 
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� Our objective is to modify the initial simplex stage by stage so 
that the resulting simplices converge toward the minimizer. In 
the function minimization process, the point with the largest 
function value is replaced with another point. The process of 
modifying the simplex continues until it converges toward the 
function minimizer. 

� We use a two-dimensional example to illustrate the rules. 
Select the initial set of          points that are to form the initial 
simplex. We next evaluate     at each point and order the
vertices to satisfy  
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� For the two-dim case we let                denote the points of the 
simplex for which    is largest, next largest, and smallest; that is, 
because we wish to minimize    , the vertex       is the best 
vertex,       is the worst vertex, and       is the next-worst vertex. 

� We next compute      , the centroid of the best     points: 

In our two-dim case,          , we would have 

� We then reflect the worst vertex in       using a reflection 
coefficient           to obtain the reflection point 
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� The typical value is         . We proceed to evaluate     at      to 
obtain                . If                       [i.e., if      lies between 
and                   ], then the point       replaces      to form a new 
simplex, and we determine the iteration. (Figure 14.1)

� We proceed to repeat the process. Thus, we compute the 
centroid of the best     vertices of the new simplex and again 
reflect the point with the largest function    value in the centroid
obtained for the best     points of the new simplex. 
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� If, however,                   , so that the point      yields the smallest 
function value among the points of the simplex, we argue that 
this direction is a good one. In this case we increase the 
distance traveled using an expansion coefficient (e.g.,

) to obtain 

� The operation above yields a new point on the line            
extended beyond      . If             now, the expansion is declared 
a success and        replaces       in the next simplex. If, on the 
other hand,            , the expansion is a failure and      replaces 
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� Finally, if             , the reflected point       would constitute the 
point with the largest function value in the new simplex. Then 
in the next step it would be reflected in      , probably an 
unfruitful operation. 

� Instead, this case is dealt with by a contraction operation in 
one of two ways. First, if              and            , then we contract 

with a contraction coefficient                 to obtain 

� We refer to this operation as the outside contraction. 
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� If, on the other hand,               and            , then       replaces 
in the contraction operation and we get 

� This operation, referred to as the inside contraction. 
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� If, in either case,            , the contraction is considered as 
success, and we replace       with       in the new simplex. If, 
however,             , the contraction is a failure, and in this case a 
new simplex can be formed by retaining       only and halving 
the distance from       to every other point in the simplex. 

� We can refer to this event as a shrinkage operation. In general, 
the shrink step produces the     new vertices of the new simplex 
according to the formula 

where             . Hence, the vertices of the new simplex are 
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� Figure 14.6 illustrates the simplex search method by showing 
the first few stages of the search for a minimizer of a function 
of two variables. 

� The starting simplex is composed of the vertices              . The 
vertices           are obtained by the expansion operation. 

� The vertex      is obtained by the reflection operation. The 
vertex      is obtained using the outside contraction operation, 
while the vertex      is obtained employing the inside 
contraction operation. 

� For clarity we terminate the process with the simplex 
composed of the vertices             . 
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� Simulated annealing is an instance of a randomized search 
method. A randomized search method, also called a 
probabilistic search method, is an algorithm that searches the 
feasible set of an optimization problem by considering 
randomized samples of candidate points in the set. 

� Suppose that we wish to solve an optimization problem 

� Typically, we start a randomized search process by selecting a 
random initial point              . Then, we select a random next-
candidate point, usually close to 
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� We assume that for any           , there is a set                  such 
that we can generate a random sample from this set. Typically, 

is a set of points that are “close” to    , and for this reason 
we usually think of          as a “neighborhood” of    . 

� When speaking of generating a random point in          , we 
mean that there is a prespecified distribution over         , and we 
sample a point with this distribution. Often, this distribution is 
chosen to be uniform over         ; other distributions are often 
used, including Gaussian and Cauchy. 
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� Naïve random search algorithm
� 1. Set            . Select an initial point 

� 2. Pick a candidate point         at random from 

� 3. If                             , then set                      ; else, set 

� 4. If stopping criterion satisfied, then stop. 

� 5. Set                  , go to step 2. 

� Note that the algorithm has the familiar form
where        is randomly generated. By design, the direction 
either is     or is a descent direction. Typical stopping criteria 
include reaching a certain number of iterations, or reaching a 
certain objective function value. 
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� The main problem of the random search method is that it may 
get stuck in a region around a local minimizer. For example, if 

is a local minimizer and             is sufficiently small that all 
points in it have no smaller objective function value than      , 
then clearly the algorithm will be stuck and will never find a 
point outside of            . 

� We need to consider points outside this region. One way to 
achieve this goal is to make sure that at each    , the 
neighborhood              is a very large set. An extreme example 
is where                   . However, this results in slow search 
process, because the sampling of candidate points to consider is 
spread out, making it more unlikely to find a better candidate 
point. 
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� Another way is to modify the naïve search algorithm so that we 
can “climb out” of such as region. This means that the 
algorithm may accept a new point that is worse than the current 
point. 

� Simulated annealing algorithm
� 1. Set            . Select an initial point 

� 2. Pick a candidate point         at random from 

� 3. Toss a coin with probability of HEAD equal to
If HEAD, then set                       ; else, set 

� 4. If stopping criterion satisfied, then stop. 

� 5. Set                  , go to step 2.



Simulated Annealing Algorithm

18

� The simulated anneal algorithm also has the familiar form
, where        is randomly generated. But in 

simulated annealing the direction        might be an ascent 
direction. However, as the algorithm progresses, we can keep 
track of the best-so-far point – that is a point         which, at 
each    , is equal to a       ,                   , such that
for all                   .  

� The best-so-far point can be updated at each step     as follows: 
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� By keeping track of the best-so-far point, we can treat the 
simulated annealing algorithm simply as a search procedure; 
the best-so-far point is what we eventually use when the 
algorithm stops. 

� The major difference between simulated annealing and naïve 
random search is that in step 3, there is some probability that 
we set the next iterate to be equal to the random point selected 
from the neighborhood, even if that point turns out to be worse 
than the current iterate. This probability is called the 
acceptance probability. 
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� The acceptance probability must be chosen appropriately. A 
typical choice is 

where        is the exponential function and      represents a 
positive sequence called the temperature schedule or cooling 
schedule. 

� Notice that if                          , then                                   , 
which means that we set                    . However, if 
there is still a positive probability of setting                   ; this 
probability is equal to 
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� Note that the larger the difference between            and            , 
the less likely we are to move to the worse point       . Similarly, 
the smaller the value of     , the less likely we are to move to 

� It is typical to let the “temperature”      be monotonically 
decreasing to 0 (hence the word cooling). In other words, as 
the iteration index     increases, the algorithm becomes 
increasingly reluctant to move to a worse point. 

� The intuitive reason for this behavior is that initially we wish to 
actively explore the feasible set, but with time we would like to 
be less active in exploration so that we spend more time in a 
region around a global minimizer. 
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� The term annealing comes from the field of metallurgy, where 
it refers to a technique for improving the property of metals. 
The basic procedure is to heat up a piece of metal and then cool 
it down in a controlled fashion. When the metal is first heated, 
the atoms in it become unstuck from their initial positions. 
Then, as cooling takes place, the atoms gradually configure 
themselves in states of lower internal energy. Provided that the 
cooling is sufficiently slow, the final internal energy is lower 
than the initial energy, thereby refining the crystalline structure 
and reducing defects. 
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� Hajek shows that an appropriate cooling schedule is 

where           is a problem-dependent constant (large enough to 
allow the algorithm to “climb out” of regions around local 
minimizers that are not global minimizers). 

� Simulated annealing is often also used in combinatorial 
optimization, where the feasible set is finite. An example is the 
celebrated traveling salesperson problem. 
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� This optimization method is inspired by social interaction 
principles. The PSO algorithm differs from the randomized 
search methods in one key way: Instead of updating a single 
candidate solution        at each iteration, we update a 
population (set) of candidate solutions, called a swarm. Each 
candidate solution in the swarm is called a particle. 

� We think of a swarm as an apparently disorganized population 
of moving individuals that tend to cluster together while each 
individual seems to be moving in a random direction. 
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� Suppose that we wish to minimize an objective function over 
In the PSO algorithm, we start with an initial randomly 
generated population of points in      . Associated with each 
point in the population is a velocity vector. We think of each 
point as the position of a particle, moving with an associated 
velocity. 

� We then evaluate the objective function at each point in the 
population. Based on this evaluation, we create a new 
population of points together with a new set of velocities. 
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� Each particle keeps track of its best-so-far position. That is the 
best position it has visited so far. We will call it personal best
(pbest). In contrast, the overall best-so-far position is called a 
global best (gbest). 

� The particles “interact” with each other by updating their 
velocities according to their individual personal best as well as 
the global best. In the gbest version of the PSO algorithm, the 
velocity of each particle is changed, at each time step, toward a 
combination of its pbest and the gbest locations. 

� Typical stopping criteria of the algorithm consist of reaching a 
certain number of iterations, or reaching a certain objective 
function value. 
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� Let                   be the objective function that we wish to 
minimize. Let     be the population size, and index the particles 
in the swarm by                 . Denote the position of particle    by 

and its velocity by            . Let      be the pbest of 
particle     and      the best. 

� It is convenient to introduce the Hadamard product (or Schur
product) operator, denoted by    . If      and      are matrices with 
the same dimension, then            is a matrix of the same 
dimension as     resulting from entry-by-entry multiplication of 

and     . 
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� 1. Set          . For                , generate initial random positions 
and velocities        , and set                 . Set 

� 2. For                 , generate random    -vectors        and        with 
components uniformly in the interval (0, 1), and set 

� 3. For                , if                            , then set                      ; 
else, set 

� 4. If there exists                    such that                           , then set 
; else, set 

� 5. If stopping criterion satisfied, then stop. 

� 6. Set               , go to step 2. 
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� The parameter     is referred to as an inertial constant. 
Recommended values are slightly less than 1. The parameters 

and      are constants that determine how much the particle is 
directed toward “good” positions. They represent a “cognitive” 
and a “social” component, respectively, in that they affect how 
much the particle’s person best and the global best influence its 
movement. Recommended values are               . 
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� The PSO techniques have evolved since 1995. Recently Clerc
proposed a constriction-factor version of the algorithm, where 
the velocity is updated as  

where the constriction coefficient     is computed as 

� For example, for           , we have               . The role of the 
constriction coefficient is to speed up the convergence. 
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� A genetic algorithm is a randomized, population-based search 
technique that has its roots in the principles of genetics.

� Suppose that we wish to solve an optimization problem of the 
form  

� We start with an initial set of points in    , denoted by        , 
called the initial population. We then evaluate the objective 
function at points in        . Based on this evaluation, we create a 
new set of points        . The creation of         involves certain 
operations on points in        , called crossover and mutation. 
We repeat the procedure iteratively, generating populations

, until an appropriate stopping criterion is reached.  
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� The purpose of the crossover and mutation operations is to 
create a new population with an average objective function 
value that is higher than that of the previous population. 

� Genetic algorithms do not work directly with points in the set 
but rather with an encoding of the points in     . Specifically, we 
need first to map     onto a set consisting of strings of symbols, 
all of equal length. These strings are called chromosomes. 
Each chromosome consists of elements from a chosen set of 
symbols, called the alphabet. For example, a common alphabet 
is the set {0.1}, in which case the chromosomes are simply 
binary strings. 
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� We denote by     the length of chromosomes (i.e., the number of 
symbols in the strings). To each chromosome there corresponds 
a value of the objective function, referred to as the fitness of 
the chromosome. 

� For each chromosome   , we write         for its fitness. We 
assume that     is a nonnegative function. 

� The choice of chromosome length, alphabet, and encoding is 
called the representation scheme for the problem. 
Identification of an appropriate representation scheme is the 
first step in using genetic algorithms. 
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� Once a suitable representation scheme has been chosen, the 
next phase is to initialize the first population         of 
chromosomes. This is usually done by a random selection of a 
set of chromosomes. 

� We then apply the operations of crossover and mutation on the 
population. During each iteration     of the process, we evaluate 
the fitness            of each member        of the population        . 
After the fitness of the entire population has been evaluated, we 
form a new population               in two stages. 
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� We form a set          with the same number of elements as         . 
This number is called the population size, which we denote by

.  The set         , called the mating pool, is formed from
using a random procedure as follows. 

� Each point         in          is equal to         in          with 
probability 

where 
and the sum is taken over the whole of        . In other words, we 
select chromosomes into the mating pool with probabilities 
proportional to their fitness. 

� The selection scheme is called the roulette-wheel scheme. 
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� An alternative selection scheme is the tournament scheme. 

� First, we select a pair of chromosomes at random from        . 
We then compare the fitness values of these two chromosomes, 
and place the fitter of the two into         . We repeat this 
operation until the mating pool          contains      chromosomes. 

� The crossover operation takes a pair of chromosomes, called 
the parents, and gives a pair of offspring chromosomes. The 
operation involves exchanging substrings of the two parent 
chromosomes. 
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� Pairs of parents for crossover are chosen from the mating pool 
randomly, such that the probability that a chromosome is 
chosen for crossover is     . We assume that whether or not a 
given chromosome is chosen is independent of whether or not 
any other chromosome is chosen for crossover. 

� We may randomly choose two chromosomes from the mating 
pool as parents. If     is the size of the mating pool, then 
Similarly, if we randomly pick       chromosomes, forming     
pairs of parents, we have 

� Another way is, given a value of     , we pick a random number 
of pairs of parents such that the average number of pairs is 
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� We apply the crossover operation to the parents. There are 
many types of crossover operations. The simplest crossover 
operation is the one-point crossover. We first choose a number 
randomly between 1 and           according to a uniform 
distribution, where     is the length of chromosomes. We refer 
to this number as the crossing site. Crossover then involves 
exchanging substrings of the parents to the left of the crossing 
site. 
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� We can also have crossover operations with multiple crossing 
sites. 

� After the crossover operation, we replace the parents in the 
mating pool by their offspring. The mating pool has therefore 
been modified but maintains the same number of elements. 
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� Next, we apply the mutation operation, which takes each 
chromosome from the mating pool and randomly changes each 
symbol of the chromosome with a given probability 

� In the case of binary alphabet, this change corresponds to 
complementing the corresponding bits. If the alphabet contains 
more than two symbols, then the change involves randomly 
substituting the symbol with another symbol from the alphabet. 

� Typically, the value of       is very small (e.g., 0.01), so that 
only a few chromosomes will undergo a change due to 
mutation. 
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� 1. Set          . Generate an initial population 

� 2. Evaluate 

� 3. If the stopping criterion is satisfied, then stop. 

� 4. Select           from 

� 5. Evolve           to form 

� 6. Set               , go to step 2. 



Genetic Algorithm

42

� During execution of the genetic algorithm, we keep track of the 
best-so-far chromosome, which serves as the candidate for the 
solution to the original problem. We may even copy the best-
so-far chromosome into each new population, a practice 
referred to as elitism. 

� The stopping criterion can be implemented in a number of 
ways. For example, stop after a prespecified number of 
iterations, or stop when the fitness for the best-so-far 
chromosome does not change significantly. 
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� The genetic algorithm differs from the algorithms discussed in 
previous chapters in several respects
� 1. It does not use derivatives of the objective function

� 2. It uses operations that are random within each iteration

� 3. It searches from a set of points rather than a single point at each 
iteration (like the PSO algorithm)

� 4. It works with an encoding of the feasible set rather with than the 
set itself
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� Consider the MATLAB peaks function 

We wish to maximize    over the set 
Using the MATLAB function fminunc (from the Optimization 
Toolbox), we found the optimal point to be                          , 
with objective function value 8.1062. 
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� We use a binary representation scheme with length L=32, 
where the first 16 bits encode the     component, whereas the 
remaining 16 bits encode the     component. We first map the 
interval [-3, 3] onto the interval                , via a simple 
translation and scaling. The integers in the interval 
are then expressed as binary 16-bit strings. 

� The chromosome is obtained by juxtaposing the two 8-bit 
strings. For example, the point                          is encoded as 

Encoded Encoded 
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� Using a population size of 20, we apply 50 iterations of the 
genetic algorithm. We used values of               and 

� The best-so-far solution obtained at the end of the 50 iterations 
is [0.0615, 1.5827], with objective function value 8.1013. Note 
that his solution and objective function value are very close to 
those obtained using MATLAB. 
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� For convenience, we only consider chromosomes over the 
binary alphabet. The notion schema is a set of chromosomes 
with certain common features. For example, the notion 1*01 
represents the schema

and the notation 0*101* represents the schema

Thus, a schema describes a set of chromosomes that have 
certain specified similarities. 

� If a schema has    “don’t care” symbols, then it contains     
chromosomes. Moreover, any chromosome of length     
belongs to      schemata. 
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� Given a schema that represents good solutions to our 
optimization problem, we would like the number of matching 
chromosomes in the population         to grow as     increases. 
This growth is affected by several factors. We assume 
throughout that we are using the roulette-wheel selection 
method. 

� If a schema has chromosomes with better-than-average fitness, 
then the expected (mean) number of chromosomes matching 
this schema in the mating pool          is larger than the number 
of chromosomes matching this schema in the population 
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� To quantify this assertion, let      be a given schema, and let 
be the number of chromosomes in          that match    ; 

that is,            is the number of elements in the set 

� Let            be the average fitness of chromosomes in          that 
match schema    . This means that if 

� Let     be the number of chromosomes in the population and 
be the sum of the fitness values of chromosomes in         . 
Denote by         the average fitness of chromosomes in the 
population
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� Let              be the number of chromosomes in          that match 
in other words, the number of elements in the set 

� Lemma 14.1: Let      be a given schema and              be the 
expected value of              given         , then 

� This lemma quantifies that if a schema     has chromosomes 
with better than average fitness, i.e.,                           , then the 
expected number of chromosomes matching     in the mating 
pool is larger than the number of chromosomes matching     in 
the population. 
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� We now analyze the effect of the evolution operations on the 
chromosomes in the mating pool. The order of a schema  
is the number of fixed symbols in its representation. If the 
length of chromosomes in     is    , then         is     minus the 
number of * symbols in     . For example, 

� The length of a schema     is the distance between the first 
and last fixed symbols. 
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� The order         is a number between 0 and    , and the length 
is a number between 0 and         . The order of a schema 

containing no * symbols is    , e.g.,                             . The 
length of a schema with fixed symbols in its first and last 
positions is          , e.g., 

� Given a chromosome in                , the probability that it leaves 
after crossover is bounded above by a quantity that is 
proportional to      and 

� Lemma 14.2: Given a chromosome in                , the probability 
that it is chosen for crossover and neither of its offspring is in 
is bounded above by 
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� From Lemma 14.2, we conclude that given a chromosome 
in                , the probability that either it is not selected for 
crossover or that at least one of its offspring is in     after the 
crossover operation, is bounded below by 

� Lemma 14.3: Given a chromosome in                 , the 
probability that it remains in     after the mutation operation is 
given by 
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� Theorem 14.1: Let      be a given schema and                   be the 
expected value of                   given         , then 

� Theorem 14.1 indicates how the number of chromosomes in a 
given schema changes from one population to the next. 
� 1. the role of average fitness of the given schema – the higher the 

average fitness, the higher the expected number of matches in the 
next population. 

� 2. the effect of crossover – the smaller the term, the higher the 
expected number of matches in the next population

� 3. the effect of mutation – the larger the term, the higher the expected 
number of matches in the next population
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� In summary, a schema that is short, low order, and has above-
average fitness will have on average an increasing number of 
its representatives in the population from iteration to iteration. 

� Observe that the encoding is relevant to the performance of the 
algorithm. Specifically, a good encoding is one that results in 
high-fitness schemata having small lengths and orders. 
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� The genetic algorithms described thus far operate on binary 
strings, representing elements of the feasible set     . However, 
there are some disadvantages to operating on binary strings. To 
see this, let                         represent the binary “decoding” 
function; that is, if     is a binary chromosome,               is the 
point in the feasible set             whose encoding is    . Therefore, 
the objective function being maximized by the genetic 
algorithm is not    itself but rather the composition of     and the 
decoding function    . In other words, the optimization problem 
being solved is 



Real-Number Genetic Algorithms

57

� This optimization problem may be more complex than the 
original optimization problem. For example, it may have extra 
maximizers, making the search for a global maximizer more 
difficult. 

� In real-number algorithms, for crossover, we have several 
options. The simplest is to use averaging: for a pair of parents 

and    , the offspring is                      . This offspring can then 
replace one of the parents. 

� Alternatively, we may produce two offspring as follows

where       and       are two randomly generated vectors (with 
zero mean). 
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� A third option is to take random convex combinations of the 
parents. Specifically, we generate a random number 
and then produce two offspring                               and 

� A fourth option is the perturb the two points by some random 
amount: 

� For mutation, a simple implementation is to add a random 
vector to the chromosome. Specifically, given a chromosome 
we produce this mutation as                  . This mutation is also 
called a real number creep. 

� An alternative: 
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� Consider again the previous example. We apply a real-number 
genetic algorithm to find a maximizer of    using a crossover 
operation of the fourth type described above and a mutation 
operation of the second type above. 

� With a population size of 20, we apply 50 iterations. As before, 
we used parameter values of                and                  . The 
best-so-far solution obtained at the end of the 50 iterations is 

, with objective 
function value 8.1061, which is 
close to the result described 
previously. 


