
Chapter 14 Global Search Algorithms

An Introduction to Optimization

Spring, 2014

Wei-Ta Chu

1

Introduction
� We discuss various search methods that attempts to search

throughout the entire feasible set. These methods use only
objective function values and do not require derivatives.

� They are applicable to a much wider class of optimization
problems.

� They can be used to generate “good” initial points for the
iterative methods discussed in earlier chapters.

� Some methods are also used in combinatorial optimization,
where the feasible set is finite, but typically large.

2

The Nelder-Mead Simplex Algorithm

3

� A simplex is a geometric object determined by an assembly of
points, , in the -dimensional space such that

� This condition ensures that two points in do not coincide,
three points in are not colinear, four points in are not
coplanar, and so on. Thus, simplex in is a line segment, in
it is a triangle, while a simplex in is a tetrahedron; in each
case it encloses a finite -dimensional volume.

The Nelder-Mead Simplex Algorithm

4

� Suppose that we wish to minimize . To start the
algorithm, we initialize a simplex of points. A possible
way to set up a simplex is to start with an initial point
and generate the remaining points of the initial simplex as
follows:

where the are unit vectors constituting the natural basis of
The positive constant coefficients are selected in such as
way that their magnitudes reflect the length scale of the
optimization problem.

The Nelder-Mead Simplex Algorithm

5

� Our objective is to modify the initial simplex stage by stage so
that the resulting simplices converge toward the minimizer. In
the function minimization process, the point with the largest
function value is replaced with another point. The process of
modifying the simplex continues until it converges toward the
function minimizer.

� We use a two-dimensional example to illustrate the rules.
Select the initial set of points that are to form the initial
simplex. We next evaluate at each point and order the
vertices to satisfy

The Nelder-Mead Simplex Algorithm

6

� For the two-dim case we let denote the points of the
simplex for which is largest, next largest, and smallest; that is,
because we wish to minimize , the vertex is the best
vertex, is the worst vertex, and is the next-worst vertex.

� We next compute , the centroid of the best points:

In our two-dim case, , we would have

� We then reflect the worst vertex in using a reflection
coefficient to obtain the reflection point

The Nelder-Mead Simplex Algorithm

7

� The typical value is . We proceed to evaluate at to
obtain . If [i.e., if lies between
and], then the point replaces to form a new
simplex, and we determine the iteration. (Figure 14.1)

� We proceed to repeat the process. Thus, we compute the
centroid of the best vertices of the new simplex and again
reflect the point with the largest function value in the centroid
obtained for the best points of the new simplex.

The Nelder-Mead Simplex Algorithm

8

� If, however, , so that the point yields the smallest
function value among the points of the simplex, we argue that
this direction is a good one. In this case we increase the
distance traveled using an expansion coefficient (e.g.,

) to obtain

� The operation above yields a new point on the line
extended beyond . If now, the expansion is declared
a success and replaces in the next simplex. If, on the
other hand, , the expansion is a failure and replaces

The Nelder-Mead Simplex Algorithm

9

� Finally, if , the reflected point would constitute the
point with the largest function value in the new simplex. Then
in the next step it would be reflected in , probably an
unfruitful operation.

� Instead, this case is dealt with by a contraction operation in
one of two ways. First, if and , then we contract

with a contraction coefficient to obtain

� We refer to this operation as the outside contraction.

The Nelder-Mead Simplex Algorithm

10

� If, on the other hand, and , then replaces
in the contraction operation and we get

� This operation, referred to as the inside contraction.

The Nelder-Mead Simplex Algorithm

11

� If, in either case, , the contraction is considered as
success, and we replace with in the new simplex. If,
however, , the contraction is a failure, and in this case a
new simplex can be formed by retaining only and halving
the distance from to every other point in the simplex.

� We can refer to this event as a shrinkage operation. In general,
the shrink step produces the new vertices of the new simplex
according to the formula

where . Hence, the vertices of the new simplex are

The Nelder-Mead Simplex Algorithm

12

� Figure 14.6 illustrates the simplex search method by showing
the first few stages of the search for a minimizer of a function
of two variables.

� The starting simplex is composed of the vertices . The
vertices are obtained by the expansion operation.

� The vertex is obtained by the reflection operation. The
vertex is obtained using the outside contraction operation,
while the vertex is obtained employing the inside
contraction operation.

� For clarity we terminate the process with the simplex
composed of the vertices .

Simulated Annealing

13

� Simulated annealing is an instance of a randomized search
method. A randomized search method, also called a
probabilistic search method, is an algorithm that searches the
feasible set of an optimization problem by considering
randomized samples of candidate points in the set.

� Suppose that we wish to solve an optimization problem

� Typically, we start a randomized search process by selecting a
random initial point . Then, we select a random next-
candidate point, usually close to

Simulated Annealing

14

� We assume that for any , there is a set such
that we can generate a random sample from this set. Typically,

is a set of points that are “close” to , and for this reason
we usually think of as a “neighborhood” of .

� When speaking of generating a random point in , we
mean that there is a prespecified distribution over , and we
sample a point with this distribution. Often, this distribution is
chosen to be uniform over ; other distributions are often
used, including Gaussian and Cauchy.

Naïve Random Search

15

� Naïve random search algorithm
� 1. Set . Select an initial point

� 2. Pick a candidate point at random from

� 3. If , then set ; else, set

� 4. If stopping criterion satisfied, then stop.

� 5. Set , go to step 2.

� Note that the algorithm has the familiar form
where is randomly generated. By design, the direction
either is or is a descent direction. Typical stopping criteria
include reaching a certain number of iterations, or reaching a
certain objective function value.

Simulated Annealing Algorithm

16

� The main problem of the random search method is that it may
get stuck in a region around a local minimizer. For example, if

is a local minimizer and is sufficiently small that all
points in it have no smaller objective function value than ,
then clearly the algorithm will be stuck and will never find a
point outside of .

� We need to consider points outside this region. One way to
achieve this goal is to make sure that at each , the
neighborhood is a very large set. An extreme example
is where . However, this results in slow search
process, because the sampling of candidate points to consider is
spread out, making it more unlikely to find a better candidate
point.

Simulated Annealing Algorithm

17

� Another way is to modify the naïve search algorithm so that we
can “climb out” of such as region. This means that the
algorithm may accept a new point that is worse than the current
point.

� Simulated annealing algorithm
� 1. Set . Select an initial point

� 2. Pick a candidate point at random from

� 3. Toss a coin with probability of HEAD equal to
If HEAD, then set ; else, set

� 4. If stopping criterion satisfied, then stop.

� 5. Set , go to step 2.

Simulated Annealing Algorithm

18

� The simulated anneal algorithm also has the familiar form
, where is randomly generated. But in

simulated annealing the direction might be an ascent
direction. However, as the algorithm progresses, we can keep
track of the best-so-far point – that is a point which, at
each , is equal to a , , such that
for all .

� The best-so-far point can be updated at each step as follows:

Simulated Annealing Algorithm

19

� By keeping track of the best-so-far point, we can treat the
simulated annealing algorithm simply as a search procedure;
the best-so-far point is what we eventually use when the
algorithm stops.

� The major difference between simulated annealing and naïve
random search is that in step 3, there is some probability that
we set the next iterate to be equal to the random point selected
from the neighborhood, even if that point turns out to be worse
than the current iterate. This probability is called the
acceptance probability.

Simulated Annealing Algorithm

20

� The acceptance probability must be chosen appropriately. A
typical choice is

where is the exponential function and represents a
positive sequence called the temperature schedule or cooling
schedule.

� Notice that if , then ,
which means that we set . However, if
there is still a positive probability of setting ; this
probability is equal to

Simulated Annealing Algorithm

21

� Note that the larger the difference between and ,
the less likely we are to move to the worse point . Similarly,
the smaller the value of , the less likely we are to move to

� It is typical to let the “temperature” be monotonically
decreasing to 0 (hence the word cooling). In other words, as
the iteration index increases, the algorithm becomes
increasingly reluctant to move to a worse point.

� The intuitive reason for this behavior is that initially we wish to
actively explore the feasible set, but with time we would like to
be less active in exploration so that we spend more time in a
region around a global minimizer.

Simulated Annealing Algorithm

22

� The term annealing comes from the field of metallurgy, where
it refers to a technique for improving the property of metals.
The basic procedure is to heat up a piece of metal and then cool
it down in a controlled fashion. When the metal is first heated,
the atoms in it become unstuck from their initial positions.
Then, as cooling takes place, the atoms gradually configure
themselves in states of lower internal energy. Provided that the
cooling is sufficiently slow, the final internal energy is lower
than the initial energy, thereby refining the crystalline structure
and reducing defects.

Simulated Annealing Algorithm

23

� Hajek shows that an appropriate cooling schedule is

where is a problem-dependent constant (large enough to
allow the algorithm to “climb out” of regions around local
minimizers that are not global minimizers).

� Simulated annealing is often also used in combinatorial
optimization, where the feasible set is finite. An example is the
celebrated traveling salesperson problem.

Particle Swarm Optimization

24

� This optimization method is inspired by social interaction
principles. The PSO algorithm differs from the randomized
search methods in one key way: Instead of updating a single
candidate solution at each iteration, we update a
population (set) of candidate solutions, called a swarm. Each
candidate solution in the swarm is called a particle.

� We think of a swarm as an apparently disorganized population
of moving individuals that tend to cluster together while each
individual seems to be moving in a random direction.

Particle Swarm Optimization

25

� Suppose that we wish to minimize an objective function over
In the PSO algorithm, we start with an initial randomly
generated population of points in . Associated with each
point in the population is a velocity vector. We think of each
point as the position of a particle, moving with an associated
velocity.

� We then evaluate the objective function at each point in the
population. Based on this evaluation, we create a new
population of points together with a new set of velocities.

Particle Swarm Optimization

26

� Each particle keeps track of its best-so-far position. That is the
best position it has visited so far. We will call it personal best
(pbest). In contrast, the overall best-so-far position is called a
global best (gbest).

� The particles “interact” with each other by updating their
velocities according to their individual personal best as well as
the global best. In the gbest version of the PSO algorithm, the
velocity of each particle is changed, at each time step, toward a
combination of its pbest and the gbest locations.

� Typical stopping criteria of the algorithm consist of reaching a
certain number of iterations, or reaching a certain objective
function value.

Basic PSO Algorithm

27

� Let be the objective function that we wish to
minimize. Let be the population size, and index the particles
in the swarm by . Denote the position of particle by

and its velocity by . Let be the pbest of
particle and the best.

� It is convenient to introduce the Hadamard product (or Schur
product) operator, denoted by . If and are matrices with
the same dimension, then is a matrix of the same
dimension as resulting from entry-by-entry multiplication of

and .

Basic PSO Algorithm

28

� 1. Set . For , generate initial random positions
and velocities , and set . Set

� 2. For , generate random -vectors and with
components uniformly in the interval (0, 1), and set

� 3. For , if , then set ;
else, set

� 4. If there exists such that , then set
; else, set

� 5. If stopping criterion satisfied, then stop.

� 6. Set , go to step 2.

Basic PSO Algorithm

29

� The parameter is referred to as an inertial constant.
Recommended values are slightly less than 1. The parameters

and are constants that determine how much the particle is
directed toward “good” positions. They represent a “cognitive”
and a “social” component, respectively, in that they affect how
much the particle’s person best and the global best influence its
movement. Recommended values are .

Variations

30

� The PSO techniques have evolved since 1995. Recently Clerc
proposed a constriction-factor version of the algorithm, where
the velocity is updated as

where the constriction coefficient is computed as

� For example, for , we have . The role of the
constriction coefficient is to speed up the convergence.

Genetic Algorithms

31

� A genetic algorithm is a randomized, population-based search
technique that has its roots in the principles of genetics.

� Suppose that we wish to solve an optimization problem of the
form

� We start with an initial set of points in , denoted by ,
called the initial population. We then evaluate the objective
function at points in . Based on this evaluation, we create a
new set of points . The creation of involves certain
operations on points in , called crossover and mutation.
We repeat the procedure iteratively, generating populations

, until an appropriate stopping criterion is reached.

Genetic Algorithms

32

� The purpose of the crossover and mutation operations is to
create a new population with an average objective function
value that is higher than that of the previous population.

� Genetic algorithms do not work directly with points in the set
but rather with an encoding of the points in . Specifically, we
need first to map onto a set consisting of strings of symbols,
all of equal length. These strings are called chromosomes.
Each chromosome consists of elements from a chosen set of
symbols, called the alphabet. For example, a common alphabet
is the set {0.1}, in which case the chromosomes are simply
binary strings.

Genetic Algorithms

33

� We denote by the length of chromosomes (i.e., the number of
symbols in the strings). To each chromosome there corresponds
a value of the objective function, referred to as the fitness of
the chromosome.

� For each chromosome , we write for its fitness. We
assume that is a nonnegative function.

� The choice of chromosome length, alphabet, and encoding is
called the representation scheme for the problem.
Identification of an appropriate representation scheme is the
first step in using genetic algorithms.

Genetic Algorithms

34

� Once a suitable representation scheme has been chosen, the
next phase is to initialize the first population of
chromosomes. This is usually done by a random selection of a
set of chromosomes.

� We then apply the operations of crossover and mutation on the
population. During each iteration of the process, we evaluate
the fitness of each member of the population .
After the fitness of the entire population has been evaluated, we
form a new population in two stages.

Selection and Evolution

35

� We form a set with the same number of elements as .
This number is called the population size, which we denote by

. The set , called the mating pool, is formed from
using a random procedure as follows.

� Each point in is equal to in with
probability

where
and the sum is taken over the whole of . In other words, we
select chromosomes into the mating pool with probabilities
proportional to their fitness.

� The selection scheme is called the roulette-wheel scheme.

Selection and Evolution

36

� An alternative selection scheme is the tournament scheme.

� First, we select a pair of chromosomes at random from .
We then compare the fitness values of these two chromosomes,
and place the fitter of the two into . We repeat this
operation until the mating pool contains chromosomes.

� The crossover operation takes a pair of chromosomes, called
the parents, and gives a pair of offspring chromosomes. The
operation involves exchanging substrings of the two parent
chromosomes.

Selection and Evolution

37

� Pairs of parents for crossover are chosen from the mating pool
randomly, such that the probability that a chromosome is
chosen for crossover is . We assume that whether or not a
given chromosome is chosen is independent of whether or not
any other chromosome is chosen for crossover.

� We may randomly choose two chromosomes from the mating
pool as parents. If is the size of the mating pool, then
Similarly, if we randomly pick chromosomes, forming
pairs of parents, we have

� Another way is, given a value of , we pick a random number
of pairs of parents such that the average number of pairs is

Selection and Evolution

38

� We apply the crossover operation to the parents. There are
many types of crossover operations. The simplest crossover
operation is the one-point crossover. We first choose a number
randomly between 1 and according to a uniform
distribution, where is the length of chromosomes. We refer
to this number as the crossing site. Crossover then involves
exchanging substrings of the parents to the left of the crossing
site.

Selection and Evolution

39

� We can also have crossover operations with multiple crossing
sites.

� After the crossover operation, we replace the parents in the
mating pool by their offspring. The mating pool has therefore
been modified but maintains the same number of elements.

Selection and Evolution

40

� Next, we apply the mutation operation, which takes each
chromosome from the mating pool and randomly changes each
symbol of the chromosome with a given probability

� In the case of binary alphabet, this change corresponds to
complementing the corresponding bits. If the alphabet contains
more than two symbols, then the change involves randomly
substituting the symbol with another symbol from the alphabet.

� Typically, the value of is very small (e.g., 0.01), so that
only a few chromosomes will undergo a change due to
mutation.

Genetic Algorithm

41

� 1. Set . Generate an initial population

� 2. Evaluate

� 3. If the stopping criterion is satisfied, then stop.

� 4. Select from

� 5. Evolve to form

� 6. Set , go to step 2.

Genetic Algorithm

42

� During execution of the genetic algorithm, we keep track of the
best-so-far chromosome, which serves as the candidate for the
solution to the original problem. We may even copy the best-
so-far chromosome into each new population, a practice
referred to as elitism.

� The stopping criterion can be implemented in a number of
ways. For example, stop after a prespecified number of
iterations, or stop when the fitness for the best-so-far
chromosome does not change significantly.

Genetic Algorithm

43

� The genetic algorithm differs from the algorithms discussed in
previous chapters in several respects
� 1. It does not use derivatives of the objective function

� 2. It uses operations that are random within each iteration

� 3. It searches from a set of points rather than a single point at each
iteration (like the PSO algorithm)

� 4. It works with an encoding of the feasible set rather with than the
set itself

Example

44

� Consider the MATLAB peaks function

We wish to maximize over the set
Using the MATLAB function fminunc (from the Optimization
Toolbox), we found the optimal point to be ,
with objective function value 8.1062.

Example

45

� We use a binary representation scheme with length L=32,
where the first 16 bits encode the component, whereas the
remaining 16 bits encode the component. We first map the
interval [-3, 3] onto the interval , via a simple
translation and scaling. The integers in the interval
are then expressed as binary 16-bit strings.

� The chromosome is obtained by juxtaposing the two 8-bit
strings. For example, the point is encoded as

Encoded Encoded

Example

46

� Using a population size of 20, we apply 50 iterations of the
genetic algorithm. We used values of and

� The best-so-far solution obtained at the end of the 50 iterations
is [0.0615, 1.5827], with objective function value 8.1013. Note
that his solution and objective function value are very close to
those obtained using MATLAB.

Analysis of Genetic Algorithms

47

� For convenience, we only consider chromosomes over the
binary alphabet. The notion schema is a set of chromosomes
with certain common features. For example, the notion 1*01
represents the schema

and the notation 0*101* represents the schema

Thus, a schema describes a set of chromosomes that have
certain specified similarities.

� If a schema has “don’t care” symbols, then it contains
chromosomes. Moreover, any chromosome of length
belongs to schemata.

Analysis of Genetic Algorithms

48

� Given a schema that represents good solutions to our
optimization problem, we would like the number of matching
chromosomes in the population to grow as increases.
This growth is affected by several factors. We assume
throughout that we are using the roulette-wheel selection
method.

� If a schema has chromosomes with better-than-average fitness,
then the expected (mean) number of chromosomes matching
this schema in the mating pool is larger than the number
of chromosomes matching this schema in the population

Analysis of Genetic Algorithms

49

� To quantify this assertion, let be a given schema, and let
be the number of chromosomes in that match ;

that is, is the number of elements in the set

� Let be the average fitness of chromosomes in that
match schema . This means that if

� Let be the number of chromosomes in the population and
be the sum of the fitness values of chromosomes in .
Denote by the average fitness of chromosomes in the
population

Analysis of Genetic Algorithms

50

� Let be the number of chromosomes in that match
in other words, the number of elements in the set

� Lemma 14.1: Let be a given schema and be the
expected value of given , then

� This lemma quantifies that if a schema has chromosomes
with better than average fitness, i.e., , then the
expected number of chromosomes matching in the mating
pool is larger than the number of chromosomes matching in
the population.

Analysis of Genetic Algorithms

51

� We now analyze the effect of the evolution operations on the
chromosomes in the mating pool. The order of a schema
is the number of fixed symbols in its representation. If the
length of chromosomes in is , then is minus the
number of * symbols in . For example,

� The length of a schema is the distance between the first
and last fixed symbols.

Analysis of Genetic Algorithms

52

� The order is a number between 0 and , and the length
is a number between 0 and . The order of a schema

containing no * symbols is , e.g., . The
length of a schema with fixed symbols in its first and last
positions is , e.g.,

� Given a chromosome in , the probability that it leaves
after crossover is bounded above by a quantity that is
proportional to and

� Lemma 14.2: Given a chromosome in , the probability
that it is chosen for crossover and neither of its offspring is in
is bounded above by

Analysis of Genetic Algorithms

53

� From Lemma 14.2, we conclude that given a chromosome
in , the probability that either it is not selected for
crossover or that at least one of its offspring is in after the
crossover operation, is bounded below by

� Lemma 14.3: Given a chromosome in , the
probability that it remains in after the mutation operation is
given by

Analysis of Genetic Algorithms

54

� Theorem 14.1: Let be a given schema and be the
expected value of given , then

� Theorem 14.1 indicates how the number of chromosomes in a
given schema changes from one population to the next.
� 1. the role of average fitness of the given schema – the higher the

average fitness, the higher the expected number of matches in the
next population.

� 2. the effect of crossover – the smaller the term, the higher the
expected number of matches in the next population

� 3. the effect of mutation – the larger the term, the higher the expected
number of matches in the next population

Analysis of Genetic Algorithms

55

� In summary, a schema that is short, low order, and has above-
average fitness will have on average an increasing number of
its representatives in the population from iteration to iteration.

� Observe that the encoding is relevant to the performance of the
algorithm. Specifically, a good encoding is one that results in
high-fitness schemata having small lengths and orders.

Real-Number Genetic Algorithms

56

� The genetic algorithms described thus far operate on binary
strings, representing elements of the feasible set . However,
there are some disadvantages to operating on binary strings. To
see this, let represent the binary “decoding”
function; that is, if is a binary chromosome, is the
point in the feasible set whose encoding is . Therefore,
the objective function being maximized by the genetic
algorithm is not itself but rather the composition of and the
decoding function . In other words, the optimization problem
being solved is

Real-Number Genetic Algorithms

57

� This optimization problem may be more complex than the
original optimization problem. For example, it may have extra
maximizers, making the search for a global maximizer more
difficult.

� In real-number algorithms, for crossover, we have several
options. The simplest is to use averaging: for a pair of parents

and , the offspring is . This offspring can then
replace one of the parents.

� Alternatively, we may produce two offspring as follows

where and are two randomly generated vectors (with
zero mean).

Real-Number Genetic Algorithms

58

� A third option is to take random convex combinations of the
parents. Specifically, we generate a random number
and then produce two offspring and

� A fourth option is the perturb the two points by some random
amount:

� For mutation, a simple implementation is to add a random
vector to the chromosome. Specifically, given a chromosome
we produce this mutation as . This mutation is also
called a real number creep.

� An alternative:

Example

59

� Consider again the previous example. We apply a real-number
genetic algorithm to find a maximizer of using a crossover
operation of the fourth type described above and a mutation
operation of the second type above.

� With a population size of 20, we apply 50 iterations. As before,
we used parameter values of and . The
best-so-far solution obtained at the end of the 50 iterations is

, with objective
function value 8.1061, which is
close to the result described
previously.

